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Abstract

This paper is concerned with the modelling of diffuse field transmission into composite laminate and
sandwich composite infinite cylinders. Two models are presented and compared: Symmetrical Laminate
composite and discrete thick laminate composite. The latter is shown to handle accurately, as a particular
case, the first model, and the important case of sandwich composite shells. In both models, membrane,
bending, transverse shearing as well as rotational inertia effects and orthotropic ply angle of the layers are
considered. Starting from the dynamic equilibrium relations and stress–strain–displacement relations, a
dispersion system is given in a wave approach context. Next, expressions for the matrix systems governing
the structural impedance, critical frequencies and ring frequency are given. The developed equations are
applied to the calculation of the diffuse field transmission of an infinite cylinder. Predictions with the
presented models are compared to results presented in the literature for both laminate composite and
sandwich composite configurations. They confirm the accuracy of both models and the general nature of
the presented discrete thick laminate composite model.
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1. Introduction

The laminate composite shells are a special class of modern structures, largely used in the
aeronautics and aerospace industries. In addition to their inherent complexity related to the
composite character of their nature, these structures are characterized by a significant total
thickness and a large three-dimensional scale. In this study, we consider the case of acoustic
transmission into a sandwich and/or composite laminated cylinders of infinite length, excited by a
diffuse field. This class of problem has been presented, to a certain extent in several previous
publications. In the context of the acoustic transmission through aeronautical structures, Koval
[1] proposed an expression for the transmission coefficient of an orthotropic infinite shell using the
displacement field of Nelson et al. [2]. The effects of membrane and bending were considered but
transverse shearing and rotational inertia were neglected. The influence of orthotropic behaviour
on the acoustic transmission was parametrically studied for the shell’s elastic properties along
circumferential and axial directions. The structure was excited by a plane wave in oblique
incidence. The suggested solution was used for the study of the acoustic transmission in flight. The
interior medium of the shell was considered non-resonant. Koval [3] later proposed an improved
model for the acoustic transmission modelling of laminated composite infinite cylindrical shells
excited by an oblique plane wave. Transverse shearing and rotational inertia were still neglected.
The equilibrium dynamic relations of Bert et al. [4] employing a Kirchhoff-type displacement field
were used. The orthotropic ply angle of the layers was considered. Blaise and Lesueur [5]
investigated the same problems. They reported in particular some numerical errors in the work of
Koval [1]. In their study, Blaise and Lesueur [5] used a Donnell–Mushtari’s displacements field for
orthotropic cylinders. Transverse shearing and rotational inertia were neglected. Moreover, they
presented an extension of the excitation field to a diffuse field by associating two angles of
incidence to the plane wave of excitation. However, the mathematical model validation and
associated parameters study were entirely based on calculations of the oblique plane wave
transmission loss. Only one result of the sound reduction index in diffuse field was presented; this
result will be used in this paper for the validation of the presented models. Later, Blaise and
Lesueur [6] proposed a model for the acoustic transmission of oblique incidence of multi-layered
cylindrical shells. The orthotropic ply-angle was not considered. Finally, the same authors
presented a more general model for the acoustic transmission through a 3-D orthotropic multi-
layered infinite cylindrical shell [7]. Again, the layers were supposed to have orthotropic directions
along the global coordinates of the shell. In a recent paper, Heron [8] proposed a wave approach
for curved sandwich panels. His model uses a complete and mathematically coherent discrete layer
theory for sandwich-type panels. The theory is developed for a singly curved sandwich made up of
a bottom skin laminate, a shearing core, and a top skin laminate. This model is appropriate for
the common case of thin skin-laminated composite sandwich shells. For sandwich shells having
thick or limp (compared to the core) skins the model is approximate. Moreover, the model of
Heron [8] does not accommodate the laminated thick composite shells (i.e., non-sandwich) where
the layers’ physical properties (Young’s modulus, Transverse shear modulus, and mass density)
are of similar or relatively close values.
This paper describes an alternative, simple but accurate, modelling of the transmission loss

through infinite composite cylinders. Both laminate composite and sandwich composite will be
modelled. The transverse shear and orthotropic angle of such a laminate are considered. In the
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Fig. 1. (a) The laminated composite shell coordinates and (b) The excitation field notations and cylindrical coordinates

system.
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first part, the fundamental relations of force equilibrium are expressed in the curvilinear
coordinates system represented in Fig. 1a. Two mathematical approaches to model composite
structures are presented. The first structural class is limited to symmetrical laminated composite
shells. The physical properties of the laminas’ composing the panel are smeared out through the
thickness and the panel is assumed to have a unique global displacement field for any lamina. The
second structural class is applicable to general thick laminate composite shells. For any layer an
own displacement field and dynamic equilibrium system is defined. This approach is valid for both
general laminate (symmetrical and unsymmetrical) and sandwich composite shells. In particular,
expressions are given to compute the ring frequency, the critical frequencies and mechanical
impedance of the studied structures. Using numerical examples, the two models are validated and
compared in the case of the diffuse field transmission of an infinite composite cylinder (non-
resonant interior). Moreover, the discrete laminate model and the Heron’s model [8] are also
compared in the case of a sandwich shell. The proposed laminate composite discrete layer theory
is validated experimentally for the case of a finite sandwich curved panel.
2. Mathematical models

2.1. Geometry and coordinates system

The presented models are based on the Flüge description of the strain–displacements field in a
curved layer, as given by Leissa [9]. Fig. 1a represents the laminated composite shell geometrical
configuration, where R is the curvature radius and h is the total thickness. The equations of
motion are expressed in the curvilinear coordinate system shown in Fig. 1a. The excitation and
radiated fields are expressed in the cylindrical coordinate system represented in Fig. 1b. The
transmission loss is expressed in these two reference coordinates systems using the associated
transformation relations (see Eqs. (38), Section 6). This approach of using two different reference
coordinates is of interest since it allows taking advantage of the simplicity of mathematical
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development in curvilinear coordinates as well as to correctly model the influence of the acoustic
fields by a formulation in cylindrical coordinates. Mathematically, the curvature radius is defined
as the coordinate of the neutral surface of the cylinder.
2.2. Symmetric laminate composite curved shells

For a point M belonging to the symmetrically laminated composite shell, the displacement field
is defined by the Mindlin model where both bending and transverse shear effects are considered:

uðx; y; zÞ ¼ u0ðx; yÞ þ zjxðx; yÞ,

vðx; y; zÞ ¼ v0ðx; yÞ þ zjyðx; yÞ,

wðx; y; zÞ ¼ w0ðx; yÞ. ð1Þ

The displacement field variables in relations (1) are shown in Fig. 2. Geometrically, the shell is
considered to be of infinite extent in the axial ðxÞ direction and thus the origin for both x and y is
arbitrary. Nevertheless, the origin for the z-axis is defined on a reference surface passing through
the middle thickness of the shell.
For any lamina of the shell, Flüge’s theory [9] is used to describe the strain–displacement

relations

�x ¼ u;x þ zjx;x,

�y ¼ v;y þ
w

R
þ zjy;y

� � 1
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,
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Fig. 2. The laminated composite shell displacements field.
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gxz ¼ w;x þ jx,

gyz ¼ w;y þ jy � ðvþ zjyÞ
1

Rþ z
. ð2Þ

The resultant stress forces and moments of the laminate are defined in Appendix A (A.1
and A.2).
The differential equations of dynamic equilibrium are derived from stress forces and moments

equilibrium relations in the x; y and z directions [9,10]. The layers are not considered as discrete
elements, but their effects are smeared-out through the thickness. This results in five equilibrium
equations for the shell. In the following equations, all inertial terms, membrane, bending as well as
transverse shear effects are considered:

Nx;x þNyx;y ¼ ms þ
Iz2

R

� �
u;tt þ

Iz

R
þ Iz2

� �
jx;tt,

Ny;y þNxy;x þ
Qy

R
¼ ms þ

Iz2

R

� �
v;tt þ

Iz

R
þ Iz2

� �
jy;tt,

Qx;x þQy;y �
Ny

R
¼ ms þ

Iz2

R

� �
w;tt,

Mx;x þMyx;y �Qx ¼ Iz jx;tt þ
u;tt

R

� �
þ Iz2u;tt,

Mxy;x þMy;y �Qy ¼ Iz jy;tt þ
v;tt

R

� �
þ Iz2v;tt. ð3Þ

The transverse shear-stress forces Qx and Qy, the in-plane stress forces Nx;Ny;Nxy;Nyx and the
stress moments Mx;My;Mxy;Myx are defined in Appendix A (A.4–A.6). The inertial terms
derived in the equilibrium equations (3) are expressed in Appendix A (A.7). Note that the
rotational inertia Iz2 is zero for symmetrically laminated composite panels.
The dynamic equilibrium equations of the shell can be rewritten, using Eqs. (3) and (A.4)–(A.6)

with appropriate algebraic manipulations, as presented in Appendix A (A.12). Relations
(A.12) are then expressed in terms of an in-plane and bending displacement–rotation vector hei
defined as

hei ¼ hu v w jx jyi
T, (4)

where the superscript ‘‘T’’ denotes the transpose of a vector.
The differential system of equations (A.12) is then allowed to have harmonic solutions of the

form

hei ¼ feg expðjkxxþ jkyy� jotÞ, (5)

where kx and ky are the structural wave number components in the x and y directions defined as

kx ¼ kc cosj,

ky ¼ kc sinj ð6Þ

with j the heading direction of the structural wave number kc.
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Using the solution form (5), the system equations of motion (A.12) is expressed in the form of a
generalized polynomial complex eigenvalue problem

k2
c ½A2�feg � ikc½A1�feg � ½A0�feg ¼ 0, (7)

where i ¼
ffiffiffiffiffiffiffi
�1
p

and ½A0�; ½A1�; ½A2� are real matrices of dimension 5� 5 defined in Appendix A
(A.13). Assuming l ¼ ik, problem (7) can be expressed in the form

l2½A2�feg þ l½A1�feg þ ½A0�feg ¼ 0. (8)

Eq. (8) is a second-order complex polynomial eigenvalue problem. It is preferable to transform it
into a first-order system

l
A1 A2

A2 0

" #
e

le

� �
�
�A0 0

0 A2

" #
e

le

� �
¼

0

0

� �
, (9)

so as to obtain a generalized eigenvalue problem. Relation (9) has 10 complex conjugate
eigenvalues (five conjugate pairs) and represents the dispersion relations of the laminated
composite shell. The problem is expressed in terms of l and its solutions represent the structural
wave numbers: propagating or evanescent, in two opposite directions. The propagating wave
solution must satisfy l ¼ �ik (purely imaginary) while the evanescent wave solution corresponds
to the mathematically real eigenvalue of the problem (with an infinitely small imaginary
component).
2.3. Discrete thick laminate composite curved shells

The second model is more general. It is based on a discrete theory and allows for both thick
laminate composites and sandwich shells. The displacement field of any discrete layer ‘‘i’’ of the
panel is still of Mindlin’s type

uiðx; y; zÞ ¼ ui
0ðx; yÞ þ zji

xðx; yÞ,

viðx; y; zÞ ¼ vi
0ðx; yÞ þ zji

yðx; yÞ,

wiðx; y; zÞ ¼ wi
0ðx; yÞ. ð10Þ

The layered constitution is considered asymmetrical as represented in Fig. 3a. The origin for the
z-axis is defined on a reference surface passing through the middle thickness of the shell.
Rotational inertia, in-plane, bending as well as transverse shearing effects are accounted for in
each layer. Also, orthotropic ply angle is used for any layer.
For any layer of the shell, Flüge’s theory [9] is used to describe the strain–displacement relations

(2). The resultant stress forces and moments of any layer are defined in Appendix A (A.1 and
A.2). Considering that any layer ‘‘i’’ is made up from ‘‘Ni’’ laminas, the theory developed in
Section 2.1 applies here for any layer.
There are three interlayer forces between any two layers, as represented in Fig. 3b. The total

number of interlayer forces is 3ðN � 1Þ, where N is the number of layers. For any layer ‘‘i’’ there
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are five equilibrium equations:

Ni
x;x þNi

yx;y þ Fi
x � Fi�1

x ¼ ms þ
Iz2

R

� �
u;tt þ

Iz

R
þ Iz2

� �
jx;tt

� 	i

,

Ni
y;y þNi

xy;x þ
Qi

y

R
þ Fi

y � Fi�1
y ¼ ms þ

Iz2

R

� �
v;tt þ

Iz

R
þ Iz2

� �
jy;tt

� 	i

,

Qi
x;x þQi

y;y �
Ni

y

R
þ Fi

z � Fi�1
z ¼ ms þ

Iz2

R

� �
w;tt

� 	i

,

Mi
x;x þMi

yx;y �Qi
x þ ziF i

x � zi�1Fi�1
x ¼ Iz jx;tt þ

u;tt

R

� �
þ Iz2u;tt

h ii

,

Mi
xy;x þMi

y;y �Qi
y þ ziF i

y � zi�1Fi�1
y ¼ Iz jy;tt þ

v;tt

R

� �
þ Iz2v;tt

h ii

. ð11Þ

The external and internal surfaces of the shell are considered stress-free so that F0
x ¼ F0

y ¼ F0
z ¼ 0

and FN
x ¼ FN

y ¼ FN
z ¼ 0. The expressions of the transverse shear-stress forces, the in-plane stress

forces, the inertial terms and the stress moments are presented in Appendix A (A.4–A.7). For any
layer, the dynamic equilibrium equations can be rewritten, using Eqs. (11) and (A.4)–(A.6) with
appropriate algebraic manipulations, as presented in Appendix B (B.2).
There are three relations of interlayer continuity of displacements for each of the N � 1

interlayer surfaces as follows:

uiðx; y; ziÞ ¼ ui
0ðx; yÞ þ ziji

xðx; yÞ ¼ uiþ1
0 ðx; yÞ þ zijiþ1

x ðx; yÞ ¼ uiþ1ðx; y; ziÞ,

viðx; y; ziÞ ¼ vi
0ðx; yÞ þ ziji

yðx; yÞ ¼ viþ1
0 ðx; yÞ þ zijiþ1

y ðx; yÞ ¼ viþ1ðx; y; ziÞ,

wiðx; y; ziÞ ¼ wi
0ðx; yÞ ¼ wiþ1

0 ðx; yÞ ¼ wiþ1ðx; y; ziÞ. ð12Þ

The problem has 5N þ 3ðN � 1Þ variables regrouped in two vectors; an in-plane and bending
displacement–rotation vector fUg and an interlayer forces vector fFg:

fUg ¼ fu1; v1;w1;j1
x;j

1
y; u

2; v2;w2;j2
x;j

2
y; � � � u

N ; vN ;wN ;jN
x ;j

N
y g

T,

fFg ¼ fF1
x;F

1
y;F

1
z ;F

2
x;F

2
y;F

2
z ; � � �F

N�1
x ;FN�1

y ;FN�1
z gT. ð13Þ

The associated 5N þ 3ðN � 1Þ equations are composed of five equations of dynamic equilibrium
for each of the N layers plus three equations of interlayer continuity of displacements for each of
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the N � 1 interlayer surfaces. As an example, the problem of a three layers (laminate composite or
sandwich composite) panel has 21 variables and 21 equations.
To solve for the dispersion relations, the system of equations (B.2) is expressed in terms of a

hybrid vector feg defined as

feg ¼
U

F

� �
. (14)

Assuming a harmonic solution (5), the system is expressed in the form of a generalized polynomial
complex eigenvalue problem:

k2
c ½A2�feg � ikc½A1�feg � ½A0�feg ¼ 0, (15)

where i ¼
ffiffiffiffiffiffiffi
�1
p

and ½A0�; ½A1�; ½A2� are real square matrices (in the absence of damping) of
dimension 5N þ 3ðN � 1Þ defined in Appendix B (B.3). Relation (15) has 2ð5N þ 3ðN � 1ÞÞ
complex conjugate eigenvalues and represents the dispersion relations of the laminated composite
shells. As an example, a sandwich composite shell has a dispersion relation of 42nd order.
The transverse shearing is known to become influent in middle frequencies when the panel is

thick. Its influence is not negligible as could be the rotational inertia’s in some cases. The
rotational inertia becomes influent for thick panels and must be considered especially when high
frequency accuracy is an aim. And yet, the rotational inertia is physically and numerically
important here in assuming the equilibrium in the discrete layered relations of motion. Ignoring
rotational inertia could result, in most sandwich structures cases, in large numerical errors due to
mathematical singularities.
3. Ring frequency

The following applies to both models. However, the presentation will be limited to the
symmetrical laminate for its simplicity. At the ring frequency, the shell displacement is characterized
by a breathing mode shape. It follows that, the derivatives of the in-plane and bending
displacement–rotation vector feg along x and y directions are equal to zero. Eq. (7) simplifies to

½A01�feg ¼ o2
r ½A02�feg, (16)

which represents a generalized eigenvalues problem with ½A01� and ½A02�, real matrices of dimension
5� 5 defined as follows:

½A01� ¼

0 0 0 0 0

0 �
F44

R2
þ

H44

R3
0

F45

R

F44

R
�

H44

R2

0 0 �
A22

R2
þ

B22

R3
0 0

0
F45

R
0 �F55 �

H55

R
�F45

0
F44

R
�

H44

R2
0 �F45 �F44 �

H44

R

2
6666666666664

3
7777777777775
, (17)



ARTICLE IN PRESS

S. Ghinet et al. / Journal of Sound and Vibration 289 (2006) 745–778 753
½A02� ¼

�ms 0 0 �
Iz

R
0

0 �ms 0 0 �
Iz

R
0 0 �ms 0 0

�
Iz

R
0 0 �Iz 0

0 �
Iz

R
0 0 �Iz

2
6666666666664

3
7777777777775
. (18)

The numerical solution of Eq. (16) leads to the ring frequency or ¼ 2pf r of the shell. Symbolically,
the solution of the generalized eigenvalues problem (16) leads to

or ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A22 �

B22

R

� �
1

R2ms

s
. (19)

We observe that the ring frequency is independent of the rotational inertia and the bending stiffness.
It is also independent of the membrane effects in the axial direction of the shell. As in the case of
isotropic shells, the ring frequency of the laminate composite cylindrical shells depends just on the
curvature radius, the mass per unit area and the membrane stiffness in the circumferential direction.
A similar procedure to Eq. (16) is used for the discrete thick laminate theory.
4. Critical frequencies

By analogy with plates, the critical frequencies of the curved shell are given by the particular
solution of the dispersion (7) at coincidence; that is when the structural wavenumber matches the
acoustic wavenumber:

k2
c ½A2�feg � ikc½A1�feg � ½A0�feg ¼ 0,

k0 ¼ kc ¼ o=c0. ð20Þ

In the classical case of thin isotropic panel, the critical frequency is given by

f c ¼
c20
2p

ffiffiffiffiffiffi
ms

D

r
, (21)

where D is the bending stiffness, ms is the mass per unit area and c0 is the speed of sound in air.
In the case of a laminated composite panel ðR!1Þ, the critical frequency is computed

numerically from Eq. (20) using ½A0� ¼ ½A01� � o2½A02�:

o2
c

½A2�

c20
þ ½A02�

� 	
feg � ioc

½A1�

c0
feg � ½A01�feg ¼ 0, (22)

which is a second-order polynomial eigenvalues problem with ½A01�; ½A02�; ½A1� and ½A2�

defined by the relations (17), (18) and (A.13). Assuming lc ¼ ioc, Eq. (22) can be expressed
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in the form

l2c
½A2�

c20
þ ½A02�

� 	
feg þ lc

½A1�

c0
feg þ ½A01�feg ¼ 0. (23)

Or equivalently

lc

½A1�

c0

½A2�

c20
þ ½A02�

½I � ½0�

2
64

3
75 e

lce

( )
¼
�½A01� ½0�

½0� ½I �

" #
e

lce

( )
, (24)

to obtain a generalized eigenvalue problem, where ½I � is the identity matrix and [0] a null matrix of
dimension 5� 5. This problem has 10 complex conjugate eigenvalues. The critical frequency
corresponds to a solution which satisfies the condition lcðjÞ ¼ �ioc, purely imaginary. The
critical frequency of the laminated composite panel can be written as

f cðjÞ ¼ �
ilcðjÞ
2p

. (25)

It is known [11] that an isotropic panel has a critical frequency while for an orthotropic panel; a
critical frequency region is defined. In the same manner, the limits of the critical frequency region
for the laminated composite panels are defined by f c1 ¼ f cðj ¼ 0Þ and f c2 ¼ f cðj ¼ p=2Þ. A
similar procedure is used for the discrete thick laminate theory.
5. Structural impedance

The acoustic structural impedance of the laminate composite shell is computed numerically
when the structure vibration is forced by a plane wave at oblique incidence. The acoustic wave
number trace is imposed to propagate in the structure and the relation (9) is rewritten in the form
of a linear equations system as follows:

ðk2
c ½A2� � ikc½A1� � ½A0�Þ � feg ¼ fbg, (26)

where fbg ¼ h0; 0; p; 0; 0it; p is the amplitude of the acoustical pressure of excitation and kc is the
trace of the acoustic wave number. The associated displacement vector feg is the numerical
solution of the linear system (26). The acoustic structural impedance of the shell is then expressed
as the ratio of the acoustic wave pressure p ¼ bð3Þ and the normal velocity _w of the shell as

Zsðkc;jÞ ¼
bð3Þ

ioeð3Þ
. (27)

The matrices ½A0�; ½A1� and ½A2�, in Eq. (26), are complex. The stiffness coefficients (A.8b)
considered in these matrices has an imaginary part governed by the structural damping
coefficients of the constituent layers. Once again, a similar approach is used for the discrete thick
laminate theory.



ARTICLE IN PRESS

S. Ghinet et al. / Journal of Sound and Vibration 289 (2006) 745–778 755
6. Diffuse field transmission loss

As an application of the above formulations, this section considers the acoustic transmission in
a diffuse field through laminate composite and sandwich composite infinite cylinders. The interior
acoustic medium of the shell is considered non-resonant, therefore only one transmitted wave is
accounted for in the development of the expression of the transmission coefficient [6,11]. The
incident plane wave on the structure is defined by two angles, as represented in Fig. 1b.
The external and internal acoustic mediums of the shell are considered identical and are defined

by the density of the fluid r01 ¼ r02 and the speed of sound c01 ¼ c02. The development of the
acoustic transmission coefficient expression is carried in the cylindrical coordinates system
suggested in Fig. 1b. All waves are assumed to have the same dependence in the axial direction of
the shell. The cylinder is considered to be of infinite length.
The incident plane wave is represented by

pi ¼ Pi expðiðot� k1ZZ � k1X X � k1Y Y ÞÞ

¼ Pi expðiðot� k1ZZ � k1X R cosF� k1Y R sinFÞÞ, ð28Þ

where kX ; kY and kZ are the acoustic wave number components defined as

k1X ¼ k1 cos y,

k1Y ¼ k1 sin y sinC,

k1Z ¼ k1 sin y cosC ð29Þ

and k1 ¼ k2 ¼ o=c0 are the acoustic wave numbers of the excitation and reception media.
Using Eq. (29), it is seen that

k1X R cosFþ k1Y R sinF ¼ k1R cos y cosFþ k1R sin y sinC sinF

¼
k1 cos y
cos b

R cos b cosFþ cosb
sin y
cos y

sinC sinF
� 	

¼ kW R½cos b cosFþ sinb sinF�

¼ kW R cosðbþ FÞ ð30Þ

where the notations

kW ¼
k1 cos y
cos b

and tgb ¼ tg y sinC

are used.
It results in the incident pressure expression:

pi ¼ Pi expðiðot� k1ZZ � kW R cosðbþ FÞÞÞ. (31)

Expanding the relation (31) in cylindrical harmonics [12] gives

pi ¼ Pi expðiðot� k1ZZÞÞ expð�ikW R cosðbþ FÞÞ

¼ Pi expðiðot� k1ZZÞÞ
X1
n¼0

�nð�iÞ
nJnðkW RÞ cosðnðbþ FÞÞ, ð32Þ
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where �n is the Neumann factor given by

�n ¼
1 for n ¼ 0;

2 for n ¼ 1

�
(33)

and Jn is the Bessel function of the first kind and nth order.
The incident wave on the structure pi gives a reflected wave pref in the excitation medium and a

transmitted wave pt in the interior medium of the shell. These two waves are written in the form [6]

pref ¼ expðiðot� k1ZZÞÞ
X1
n¼0

An�nð�iÞ
nH1

nðkW RÞ cosðnðbþ FÞÞ, (34)

pt ¼ expðiðot� k2ZZÞÞ
X1
n¼0

Bn�nð�iÞ
nH2

nðkW RÞ cosðnðbþ FÞÞ, (35)

where k1Z ¼ k2Z; An is the reflected wave amplitude, Bn is the transmitted wave amplitude, H1
n

and H2
n are the Hankel functions of the first and second kind and nth order.

The modal transmission coefficient of the shell is proven to be given by Blaise and Lesueur [6]

tðo; y;CÞ ¼
X1
n¼0

2�n

R � k1 cos y
RefZR

n gRefZt
ng

jZR
n þ Zt

n þ ZS
n j

2
, (36)

ZR
n ¼ �io

r0
k1 cos y

H2
nðkW RÞ

H 0n
2
ðkW RÞ

; Zt
n ¼ io

r0
k2 cos y

H1
nðkW RÞ

H 0n
1
ðkW RÞ

, (37)

where ZR
n is the modal impedance of the reflected wave, Zt

n is the modal impedance of the
transmitted wave and ZS

n ¼ Zsðkc;jÞ is the structural modal impedance of the shell given by
Eq. (27) for the laminate composite shell or the equivalent relation for the discrete thick laminate
theory.
Next, the forced wave number is expressed in the cylindrical coordinate system of the acoustic

field. Two expressions which connect the curvilinear and the cylindrical coordinates systems are
obtained

j ¼ arcsin
n

kcR

� �
and kc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

R

� �2
þ k2

1Z

r
. (38)

The diffuse field sound reduction index of the shell is thus expressed as

TLðoÞ ¼ � 10 log10ðtd ðoÞÞ þ 10 log10ðpÞ; with

tdðoÞ ¼

R 2p
0

R ymax

ymin
tðo; y;CÞdydC

pðcos2 ymin � cos2 ymaxÞ
, ð39Þ

where ymin ¼ 0 and ymax ¼ p=2 are the limit incidence angles of the plane waves composing the
diffuse field.
In Eq. (39) the shell is assumed to be completely submerged in the diffuse field. The term

10 log10ðpÞ indicates that the excited surface is not just a plan projection of the shell surface
(assumption used in the development of TLðoÞ ¼ �10 log10ðtdðoÞÞ.
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The maximum order n of the circumferential modes to consider in the summation of the
relation (36) must be slightly higher than

nmax ¼
o
c0

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 y cos2C

p
. (40)

This condition arises from the physical argument that the acoustic transmission considered here is
a forced solution problem and thus the propagating wave number in the structure cannot be
higher than the acoustic excitation wave number.
7. Numerical results and validation

The presented laminated composite model (Section 2.2) and discrete thick laminate model
(Section 2.3) have been compared to Blaise et al. models for the different oblique incidence
transmission loss configurations presented in their papers [5,6,13]. The results have been found
identical and are not repeated here for the sake of conciseness. Instead we will limit the
presentation to the validation of (i) the solution to the dispersion equations (¼ to the propagating
wavenumbers in particular) and (ii) diffuse field transmission loss for both laminate composite
and composite sandwich configurations. Table 1 gives the properties of the materials used for the
different validation cases.

7.1. Dispersion curves validation

The propagative solutions of the dispersion relations (9) and (15) are presented in Figs. 4–6 for
a symmetrical laminated composite made up of seven layers (0/45/-45/90/-45/45/0) of Material #2
(see Table 1). The heading direction of the propagative solutions, in Figs. 4–6 are 0�; 45� and 90�,
respectively. The layers’ thicknesses are: hi¼1...7 ¼ 0:00225m. In these figures the symmetrical
laminate composite model (Section 2.2) is compared to the discrete thick laminate composite
model (Section 2.3). The results obtained with these two models for laminated composite cylinders
are identical. At any heading direction the panel has two propagative solutions below the ring
frequency. At the ring frequency a third solution becomes propagative. In the dispersion field
Table 1

Materials’ properties for diffuse field transmission loss validations

Material #1 Material #2 Material #3 Material #4 Material #5 Material #6

EL (Pa) 2:1� 1011 1:25� 1011 0:48� 1011 0:1448� 109 0:665� 106 180� 109

ET (Pa) 2:1� 1011 1010 0:48� 1011 0:1448� 109 0:665� 106 180� 109

GLT (Pa) 8:0769� 1010 5:9� 109 0:181� 1011 0:5� 108 0:25� 106 6:767� 1010

GLZ (Pa) 8:0769� 1010 3� 109 0:2757� 1010 0:5� 108 0:25� 106 6:767� 1010

GTZ (Pa) 8:0769� 1010 5:9� 109 0:2757� 1010 0:5� 108 0:25� 106 6:767� 1010

nLT 0.3 0.4 0.3 0.45 0.33 0.33

r ðkg=m3Þ 7800 1600 1550 110.44 2000 7720
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Fig. 4. Laminated composite shell’s dispersion curves F ¼ 0�: (– –) discrete laminate model, (—) symmetrical laminate
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Fig. 5. Laminated composite shell’s dispersion curves F ¼ 45�: (– –) discrete laminate model, (—) symmetrical laminate

model.
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context the ring frequency is mathematically perceived as a cut-off frequency. Two others cut-off
frequencies appear at high frequencies where two additional solutions become propagative.
Next, we consider a composite sandwich and compare the presented general discrete thick

laminate composite model (Section 2.3) to the sandwich model presented by Heron [8]. It is worth
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recalling here that Heron’s model [8] is also based on a discrete approach using the classical
assumptions for a laminate sandwich (e.g. thin laminate skins, a shear bearing core). It leads to a
47 order dispersion system. On the other hand, the presented discrete thick laminate model
assumes all layers (skins and core) to be laminate and thick and lead to a 42 order dispersion
system. The skins of the studied cylinder are made up from Material #3 and the core from
Material #4. The layers’ thicknesses are: h1 ¼ h2 ¼ 0:0012 and h3 ¼ 0:0127m. The propagating
wavenumbers are presented in Figs. 7–9 for a heading direction of 0�; 45� and 90�, respectively. It
is observed that for this thin skin sandwich, the two models lead to identical solutions. In
consequence, the presented discrete laminate models can handle accurately both laminate
composites and sandwich composite shells.
Note that in the proposed discrete laminate model, full composite behaviours are considered in

each layer in order to handle various real-life configurations. In several sandwich/laminate
structures, distinct layers are not always governed by pure bending behaviours (e.g. skin in
sandwich theory) or shear (e.g. core in sandwich theory). A typical example is a tri-layers structure
made up from a core with two viscoelastic skins (symmetric free layer damping treatment). Here,
the core works in bending while the skins are working in traction/compression. Classical
assumptions of the sandwich theory will not, justly enough, correctly model this configuration.
Another example concerns a tri-layers structure with limp skins. The following case is considered
numerically. The structure has 1mm skins made up from Material #5 and 3mm core of Material
#6. The dispersion curves computed using the present discrete laminate theory and the sandwich
shell theory are given in Fig. 10. It is clearly observed that classical sandwich assumptions
completely miss the physics of the problem.
Another example showing the generality and versatility of the proposed general discrete layer

approach compared to the classical sandwich theory is the case of a sandwich structure made up



ARTICLE IN PRESS

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

Frequency (Hz)

W
av

en
u

m
b

er
 (1

/m
)

Fig. 7. Laminated composite sandwich shell’s dispersion curves F ¼ 0�: (– –) discrete laminate model, (—) sandwich

laminate model by Heron [8].
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Fig. 8. Laminated composite sandwich shell’s dispersion curves F ¼ 45� : ð��Þ discrete laminate model, (—) sandwich

laminate model by Heron [8].
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from a shear core and two thick skins. The studied structure is made up from 2.5 cm thick skins of
Material #3 and a 1 cm thick core of Material #4. The dispersion curves obtained using the
proposed discrete theory and the sandwich shell theories are given in Fig. 11. To better visualize
the asymptotical tendencies in mid-to-high frequencies, the skins dispersion curves are also
represented using thick and thin plate theories. It is clearly seen that at mid-and-high frequencies
the sandwich theory is not able to correctly capture the shear effects in the skins.
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Fig. 10. Limp skins sandwich composite shell’s dispersion curves F ¼ 45�: (—) discrete laminate model, (– –) sandwich
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7.2. Diffuse field transmission loss validations

First, we consider a cylinder (Material #1) having a thickness h ¼ 3mm. The curvature radius
of the cylinder is 2m and the structural loss factor of all layers is 0.001. The layers continuity
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conditions and the numerical implementation of the relations (19) and (25) for the laminated shell
are verified by comparing the diffuse field transmission loss of the single layer shell to the same
shell artificially subdivided into three identical layers ðh1 ¼ h2 ¼ h3 ¼ 1mmÞ. The results are given
in Fig. 12. A total agreement is found between the two configurations. Moreover, in order to
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validate the relations of the critical frequencies and the ring frequency, the minima of the
transmission loss estimations are compared to the values of the ring and critical frequencies
calculated by relations (19) and (25). These computed values are added in Fig. 12. It can be
observed that they are accurately estimated. The same validation is considered in Fig. 13 for an
orthotropic cylinder made up from Material #2 (Graphite epoxy). Two configurations are
considered: single layer with a total thickness h ¼ 10mm and a five layers shell of the same
material and thickness ðh1 ¼ � � � ¼ h5 ¼ 2mmÞ. Once again, the estimations of the ring frequency
and critical frequencies are excellent.
The diffuse field transmission loss of a symmetrical laminate composite cylinder is presented in

Fig. 14. The curvature radius of the cylinders considered is 2m. The cylinder is made up of seven
layers (0/45/-45/90/-45/45/0) of Material #2 (see Table 1) and the thicknesses of the layers are
hi¼1...7 ¼ 0:00125. The structural loss factor of all layers is 0.01. In this figure the symmetrical
laminate composite model (Section 2.2) is compared to the discrete thick laminate composite
model (Section 2.3). Once again, the results obtained with these two models for laminated
composite cylinders are identical. The ring and critical frequencies of the laminated composite
cylinder are numerically estimated and shown in Fig. 14: f r ¼ 422:24Hz; f c1 ¼ 981:96Hz;
f c2 ¼ 2083:5244Hz.
Next, the discrete laminate composite model (Section 2.3) is compared in Fig. 15 with the

Heron’ model [8] for the sandwich composite cylinder studied in the previous section. Once again
it is observed that these two models lead to identical solutions. The computed values of the ring
frequency and the critical frequency are shown in Fig. 15; f r ¼ 401:8Hz; f c ¼ 1134:1Hz. An
excellent agreement is observed between the ring and critical frequencies locus in the transmission
loss results and the direct computed values.
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8. Experimental validation

Finally an experimental validation of the proposed formulation is proposed. It consists of the
transmission loss of a curved finite sandwich composite panel. The panel has side dimensions
1:37� 1:65m2, a 2m radius, 0.0014732m thick skins made up of Material #3 and 0.0127m thick
core made up of Material #4. The tests are done at the reverberant-anechoic facility of GAUS
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(Groupe Acoustique de l’Université de Sherbrooke). Great care was taken to install the panel to
eliminate leaks and minimize the damping effects of the mounting. The results are given in Fig. 16.
The numerical result is obtained using a statistical energy analysis scheme using a wavenumber
approach based on the proposed discrete laminate theory. Details of the calculations of the
necessary parameters (modal density, radiation efficiency, non-resonant transmission and
resonant transmission) for the SEA calculations can be found in Ref. [14]. The damping loss
factor was taken constant by band with values from 1% to 2.5%. Still, excellent agreement is
observed between numerical simulation and experiment. In particular, the model is able to
correctly capture the ring and critical frequency regions. Better agreement can be found using an
experimentally measured damping loss factor.
9. Conclusions

The paper discusses the modelling of the diffuse field transmission loss through infinite
laminated composite cylindrical cylinders. Two models were presented and compared; the first is
limited to symmetrically laminate composite shells and the second is more general and is based on
a discrete layer theory. For each model, membrane, bending, transverse shearing as well as
rotational inertia effects and orthotropic ply angle of the layers are considered. Moreover in the
symmetrically laminate composite model, the accurate estimation of the shear correction
coefficients is crucial. Expressions for the numerical calculation of the structural impedance, the
critical frequencies and the ring frequency were also given in both cases. The two models were
compared for symmetrical laminate composite cylinders and found similar. Moreover, for
sandwich configurations, the discrete layer model was compared successfully to Heron’ sandwich
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composite model [8]. Finally, the discrete laminate composite model was successfully compared
with experimental results in the case of a finite sandwich curved panel.
In conclusion, it is suggested that the presented discrete model is an appropriate general model.

It allows for both symmetrical and asymmetrical laminated composite and/or sandwich-type
composite panels with thin or thick laminate skins. Moreover, its computational cost is acceptable
(42 eigenvalue system compared to 10 for the thick laminate or 47 for the Heron’s sandwich
model).
Appendix A. Main equations of the laminate composite model

A.1. Equilibrium equations

The resultant stress forces and moments of the laminate are defined as in Ref. [9]

Qx ¼

Z h=2

�h=2
txz 1þ

z

R

� �
dz ¼

XN

k¼1

Z huk

hlk

tk
xz 1þ

z

R

� �
dz,

Qy ¼

Z h=2

�h=2
tyz dz ¼

XN

k¼1

Z huk

hlk

tk
yz dz, ðA:1Þ
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dz,
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Using the notations presented in Figs. 1a and 2, the integral limits huk and hlk in the relations (A.1)
and (A.2) are computed using the following relations:

huk ¼
h

2
�
Xk�1
j¼0

hj; hlk ¼
h

2
�
Xk

j¼1

hj, (A.3)

where h is the total thickness of the shell and hj is the thickness of lamina j (for j ¼ 0; hj ¼ h0 ¼ 0).
The transverse shear-stress forces used in equilibrium equations (3) are defined as follows:

Qx ¼ F45 w;y þ jy �
v

R

� �
þ F55ðw;x þ jxÞ þH55

w;x

R
þ

jx

R

� �
,

Qy ¼ F44 w;y þ jy �
v

R

� �
þ F45ðw;x þ jxÞ þH44

v

R2
�

jy

R
�

w;y

R

� �
ðA:4Þ

and the in-plane stress forces
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as well as the stress moments
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The inertial terms in the equilibrium equations (3) are expressed by the following relations:

ms ¼
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2

� 	
, ðA:7Þ

where ms is the mass per unit area, Iz is the rotational inertia and rk is the mass density
of the layer k. The elastic constants derived in (A.4)–(A.6) are defined by the following
relations:

Aij ¼
XN

k¼1

Qk
ijðhuk � hlkÞ,

Bij ¼
XN

k¼1

Qk
ij

h2
uk � h2lk

2
,

Dij ¼
XN

k¼1

Qk
ij

h3
uk � h3lk

3
,

Fij ¼ kij

PN
k¼1

Ck
ijðhuk � hlkÞ;

Hij ¼ kij

PN
k¼1

Ck
ij

h2
uk � h2

lk

2
;

9>>>>=
>>>>;

i; j ¼ 4; 5, ðA:8aÞ
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A	ij ¼
XN

k¼1

Qk
ijðhuk � hlkÞð1þ _iZkÞ,

B	ij ¼
XN

k¼1

Qk
ij

h2
uk � h2lk

2
ð1þ _iZkÞ,

D	ij ¼
XN

k¼1

Qk
ij

h3uk � h3lk
3

ð1þ _iZkÞ

F	ij ¼ kij

PN
k¼1

Ck
ijðhuk � hlkÞð1þ _iZkÞ;

H	ij ¼ kij

PN
k¼1

Ck
ij

h2
uk � h2lk

2
ð1þ _iZkÞ;

9>>>>=
>>>>;

i; j ¼ 4; 5 ðA:8bÞ

where kij are the transverse shear correction factors [15], _i ¼
ffiffiffiffiffiffiffi
�1
p

; Zk is the k layer’s structural
damping coefficient and Qk

ij are the k layer’s in-plane elastic constants defined by the following
relations as shown by Berthelot [10]

Qk
11 ¼ Ck

L cos4 yk þ Ck
T sin4 yk þ 2ðCk

LT þ 2Gk
LT Þ sin

2 yk cos
2 yk,

Qk
12 ¼ ðC

k
L þ Ck

T � 4Gk
LT Þ sin

2 yk cos
2 yk þ Ck

LT ðcos
4 yk þ sin4 ykÞ,

Qk
16 ¼ ðC

k
L � Ck

LT � 2Gk
LT Þ sin yk cos

3 yk

þ ðCk
LT � Ck

T þ 2Gk
LT Þ sin

3 yk cos yk,

Qk
22 ¼ Ck

L sin4 yk þ Ck
T cos4 yk þ 2ðCk

LT þ 2Gk
LT Þsin

2 yk cos
2 yk,

Qk
26 ¼ ðC

k
L � Ck

LT � 2Gk
LT Þ sin

3 yk cos yk

þ ðCk
LT � Ck

T þ 2Gk
LT Þ sin yk cos

3 yk,

Qk
66 ¼ ðC

k
L þ Ck

T � 2ðCk
LT þ Gk

LT ÞÞsin
2 yk cos

2 yk

þ Gk
LT ðcos

4 yk þ sin4 ykÞ, ðA:9Þ

Ck
L ¼

Ek
L

1� nk
LTn

k
TL

� �
Ck

T ¼
Ek

T

1� nk
LTn

k
TL

� �
Ck

LT ¼
nk

LT Ek
LT

1� nk
LTn

k
TL

� �
(A.10)

and Ck
ij are the k layer’s transversal shear elastic constants are defined as [10]

Ck
44 ¼ Gk

TZ cos2 yk þ Gk
LZ sin2 yk,

Ck
45 ¼ ðG

k
LZ � Gk

TZÞ sin yk þ cos yk,

Ck
55 ¼ Gk

LZ cos2 yk þ Gk
TZsin

2 yk. ðA:11Þ
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There are several methods for computing the shear correction coefficients. The models of
Berthelot [10], Guy [16] and Batoz et al. [15] for transversal shear coefficients computation were
tested and found identical. The approach presented in Batoz [15] is selected for its simplicity.
The elastic coefficients in Eqs. (A.9) and (A.11) are represented according to the ortho-

tropic angles yk shown in Fig. 17 as the angles between the principal coordinate system of each
layer kðL-0-T) and the global coordinate system of the shell (x-0-y).
The dynamic equilibrium equations of the shell are rewritten, after appropriate algebraic

manipulations as

A11 þ
B11

R

� �
u;xx þ 2A16u;xy þ A66 �

B66

R

� �
u;yy þ A16 þ

B16

R

� �
v;xx

þ A12 þ A66ð Þv;xy þ A26 �
B26

R

� �
v;yy þ B11 þ

D11

R

� �
jx;xx þ 2B16jx;xy

þ B66 �
D66

R

� �
jx;yy þ B16 þ

D16

R

� �
jy;xx þ B12 þ B66ð Þjy;xy þ B26 �

D26

R

� �
jy;yy

þ
A12

R
w;x þ

A26

R
�

B26

R2

� �
w;y þ msuþ

Iz

R
jx

� �
o2 ¼ 0,

A16 þ
B16

R

� �
u;xx þ ðA12 þ A66Þu;xy þ A26 �

B26

R

� �
u;yy

þ A66 þ
B66

R

� �
v;xx þ 2A26v;xy þ A22 �

B22

R

� �
v;yy þ B16 þ

D16

R

� �
jx;xx

þ ðB12 þ B66Þjx;xy þ B26 �
D26

R

� �
jx;yy þ B66 þ

D66

R

� �
jy;xx

þ 2B26jy;xy þ B22 �
D22

R

� �
jy;yy þ

A26

R
þ

F45

R

� �
w;x

þ
A22

R
�

B22

R2
þ

F44

R
�

H44

R2

� �
w;y �

F44

R2
�

H44

R3

� �
vþ

F45

R
jx

þ
F44

R
�

H44

R2

� �
jy þ msvþ

Iz

R
jy

� �
o2 ¼ 0,
y 

x 

T 

L

θθk

z

0

Fig. 17. Orthotropic directions of a layer.
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F55 þ
H55

R

� �
w;xx þ 2F45w;xy þ F44 �

H44

R

� �
w;yy �

A12

R
u;x

�
A26

R
�

B26

R2

� �
u;y �

A26

R
þ

F45

R

� �
v;x �

A22

R
�

B22

R2
þ

F44

R
�

H44

R2

� �
v;y

�
B12

R
� F55 �

H55

R

� �
jx;x �

B26

R
�

D26

R2
� F45

� �
jx;y

�
B26

R
� F45

� �
jy;x �

B22

R
�

D22

R2
� F44 þ

H44

R

� �
jy;y

�
A22

R
�

B22

R3

� �
wþmso2w ¼ 0,

B11 þ
D11

R

� �
u;xx þ 2B16u;xy þ B66 �

D66

R

� �
u;yy

þ B16 þ
D16

R

� �
v;xx þ B12 þ B66ð Þv;xy B26 �

D26

R

� �
v;yy þD11jx;xx

þ 2D16jx;xy þD66jx;yy þD16jy;xx þ D12 þD66ð Þjy;xy þD26jy;yy

þ
B12

R
� F55 �

H55

R

� �
w;x þ

B26

R
�

D26

R2
� F45

� �
w;y

þ
F45

R
v� F55 þ

H55

R

� �
jx � F45jy þ Izo2 jx þ

u

R

� �
¼ 0,

B16 þ
D16

R

� �
u;xx þ B12 þ B66ð Þu;xy þ B26 �

D26

R

� �
u;yy

þ B66 þ
D66

R

� �
v;xx þ 2B26v;xy þ B22 �

D22

R

� �
v;yy

þD16jx;xx þ D12 þD66ð Þjx;xy

þD26jx;yy þD66jy;xx þ 2D26jy;xy þD22jy;yy þ
B26

R
� F45

� �
w;x

�
B22

R
�

D22

R2
� F44 þ

H44

R

� �
w;y þ

F44

R
�

H44

R2

� �
v

� F45jx � F44 �
H44

R

� �
jy þ Izo2 jy þ

v

R

� �
¼ 0.

ðA:12Þ
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A.2. Dispersion system matrices

The matrices ½A0�; ½A1�; ½A2� used in Eq. (7) are defined as follows:

½A0�

¼

mso2 0 0 Izo2 0

0 mso2 �
F44

R2
þ

H44

R3
0

F45

R

F44

R
�

H44

R2
þ

Iz

R
o2

0 0 mso2 �
A22

R2
þ

B22

R3
0 0

Iz

R
o2 F45

R
0 Izo2 � F55 �

H55

R
�F45

0
F44

R
�

H44

R2
þ

Iz

R
o2 0 �F45 Izo2 � F44 �

H44

R

2
6666666666666664

3
7777777777777775

½A1� ¼

0 0 a13 0 0

0 0 a23 0 0

�a13 �a23 0 a34 a35

0 0 �a34 0 0

0 0 �a35 0 0

2
666666664

3
777777775
; ½A2� ¼

b11 b12 0 b14 b15

b12 b22 0 b24 b25

0 0 b33 0 0

b14 b24 0 b44 b45

b15 b25 0 b45 b55

2
666666664

3
777777775

ðA:13Þ

with coefficients aij and bij defined as follows:

a13 ¼ �
A12

R
cosj�

A26

R
�

B26

R2

� �
sinj,

a23 ¼ �
A22

R
�

B22

R2
þ

F44

R
�

H44

R2

� �
sinj�

A26

R
þ

F45

R

� �
cosj,

a34 ¼
B12

R
� F55 �

H55

R

� �
cosjþ

B26

R
�

D26

R2
� F45

� �
sinj,

a35 ¼
B22

R
�

D22

R2
� F44 þ

H44

R

� �
sinjþ

B26

R
� F45

� �
cosj. ðA:14Þ

b11 ¼ A11 þ
B11

R

� �
cos2 jþ 2A16 cosj sinjþ A66 �

B66

R

� �
sin2 j,

b12 ¼ A16 þ
B16

R

� �
cos2 jþ A12 þ A66ð Þ cosj sinjþ A26 �

B26

R

� �
sin2 j,

b14 ¼ B11 þ
D11

R

� �
cos2 jþ 2B16 cosj sinjþ B66 �

D66

R

� �
sin2 j,
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b15 ¼ B16 þ
D16

R

� �
cos2 jþ B12 þ B66ð Þ cosj sinjþ B26 �

D26

R

� �
sin2 j,

b22 ¼ A66 þ
B66

R

� �
cos2 jþ 2A26 cosj sinjþ A22 �

B22

R

� �
sin2 j,

b24 ¼ B16 þ
D16

R

� �
cos2 jþ B12 þ B66ð Þ cosj sinjþ B26 �

D26

R

� �
sin2 j,

b25 ¼ B66 þ
D66

R

� �
cos2 jþ 2B26 cosj sinjþ B22 �

D22

R

� �
sin2 j,

b33 ¼ F55 þ
H55

R

� �
cos2 jþ 2F45 cosj sinjþ F44 �

H44

R

� �
sin2 j,

b44 ¼ D11 cos
2 jþ 2D16 cosj sinjþD66 sin

2 j,

b45 ¼ D16 cos
2 jþ ðD12 þD66Þ cosj sinjþD26 sin

2 j,

b55 ¼ D66 cos
2 jþ 2D26 cosj sinjþD22 sin

2 j. ðA:15Þ
Appendix B. Main equations of the general discrete layer model

B.1. Equilibrium equations

In this model, the previous laminate composite theory is used to express for each layer the
internal stress forces in terms of the layer’ five displacement variables and mechanical properties.
However, this time the integral limits hi

uk and hi
lk in relations (A.1) and (A.2) are computed using

the following relations:

hi
uk ¼ zi�1 þ

Xk

j¼1

hi
j; hi

lk ¼ zi�1 þ
Xk�1
j¼0

hi
j, (B.1)

where hi
j is the thickness of the lamina j of layer i ðhi

0 ¼ 0Þ. Moreover, since a discrete layer theory
is used, no shear corrections coefficients are required.
Next, the dynamic equilibrium equations of the shell, accounting for the interlayer continuity

forces are written. After appropriate algebraic manipulations, the following system of equation is
found:

A11 þ
B11

R

� �
u;xx þ 2A16u;xy þ A66 �

B66

R

� �
u;yy þ A16 þ

B16

R

� �
v;xx

�

þ ðA12 þ A66Þv;xy þ A26 �
B26

R

� �
v;yy þ B11 þ

D11

R

� �
jx;xx þ 2B16jx;xy

þ B66 �
D66

R

� �
jx;yy þ B16 þ

D16

R

� �
jy;xx þ ðB12 þ B66Þjy;xy þ B26 �

D26

R

� �
jy;yy
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þ
A12

R
w;x þ

A26

R
�

B26

R2

� �
w;y

	i

þ Fi
x � Fi�1

x þ ms þ
Iz2

R

� �
uþ

Iz

R
þ Iz2

� �
jx

� �i

o2 ¼ 0.

A16 þ
B16

R

� �
u;xx þ ðA12 þ A66Þu;xy þ A26 �

B26

R

� �
u;yy

�

þ A66 þ
B66

R

� �
v;xx þ 2A26v;xy þ A22 �

B22

R

� �
v;yy þ B16 þ

D16

R

� �
jx;xx

þ ðB12 þ B66Þjx;xy þ B26 �
D26

R

� �
jx;yy þ B66 þ

D66

R

� �
jy;xx

þ 2B26jy;xy þ B22 �
D22

R

� �
jy;yy þ

A26

R
þ

F45

R

� �
w;x

þ
A22

R
�

B22

R2
þ

F44

R
�

H44

R2

� �
w;y �

F44

R2
�

H44

R3

� �
vþ

F45

R
jx þ

F44

R
�

H44

R2

� �
jy

	i

þ Fi
y � Fi�1

y þ ms þ
Iz2

R

� �
vþ

Iz

R
þ Iz2

� �
jy

� �i

o2 ¼ 0,

F55 þ
H55

R

� �
w;xx þ 2F45w;xy þ F44 �

H44

R

� �
w;yy �

A12

R
u;x �

A26

R
�

B26

R2

� �
u;y

�

�
A26

R
þ

F45

R

� �
v;x �

A22

R
�

B22

R2
þ

F44

R
�

H44

R2

� �
v;y

�
B12

R
� F55 �

H55

R

� �
jx;x �

B26

R
�

D26

R2
� F45

� �
jx;y �

B26

R
� F45

� �
jy;x

�
B22

R
�

D22

R2
� F44 þ

H44

R

� �
jy;y �

A22

R
�

B22

R3

� �
w

	i

þ Fi
z � Fi�1

z þ ðmswÞ
io2 ¼ 0,

B11 þ
D11

R

� �
u;xx þ 2B16u;xy þ B66 �

D66

R

� �
u;yy þ B16 þ

D16

R

� �
v;xx þ ðB12 þ B66Þv;xy

�

þ B26 �
D26

R

� �
v;yy þD11jx;xx þ 2D16jx;xy þD66jx;yy

þD16jy;xx þ ðD12 þD66Þjy;xy þD26jy;yy þ
B12

R
� F55 �

H55

R

� �
w;x

þ
B26

R
�

D26

R2
� F45

� �
w;y þ

F45

R
v� F55 þ

H55

R

� �
jx � F45jy

	i

þ ziF i
x � zi�1Fi�1

x þ Iz jx þ
u

R

� �
þ Iz2u

� �i

o2 ¼ 0,
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B16 þ
D16

R

� �
u;xx þ ðB12 þ B66Þu;xy þ B26 �

D26

R

� �
u;yy

�

þ B66 þ
D66

R

� �
v;xx þ 2B26v;xy þ B22 �

D22

R

� �
v;yy

þD16jx;xx þ ðD12 þD66Þjx;xy þD26jx;yy

þD66jy;xx þ 2D26jy;xy þD22jy;yy þ
B26

R
� F45

� �
w;x

�
B22

R
�

D22

R2
� F44 þ

H44

R

� �
w;y þ

F44

R
�

H44

R2

� �
v� F45jx

� F44 �
H44

R

� �
jy

	i

þ ziF i
y � zi�1Fi�1

y þ Iz jy þ
v

R

� �
þ Iz2v

� �i

o2 ¼ 0. ðB:2Þ

The different coefficients in this system are given in Eq. (A.8)
B.2. Dispersion equation matrices

The matrices ½A0�; ½A1�; ½A2� used in Eq. (15) are real square matrices of dimension 5N þ

3ðN � 1Þ defined as follows:

½A0�

¼

½A0�
1 0 0 0 0 0 ½F0�

1 0 0 0 0 0

½A0�
2 0 0 0 0 �½F0�

1 ½F 0�
2 0 0 0 0

½A0�
3 0 0 0 0 �½F0�

2 ½F0�
3 0 0 0

. .
.

0 0 0 0 0 . .
.

0 0

½A0�
N�1 0 0 0 0 0 �½F0�

N�2 ½F0�
N�1

½A0�
N 0 0 0 0 0 �½F0�

N�1

0 0 0 0 0 0

0 0 0 0 0

sym 0 0 0 0

0 0 0

0 0

0

2
6666666666666666666666666666664

3
7777777777777777777777777777775
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½A1� ¼

½A1�
1 0 0 0 0

0 ½A1�
2 0 0 0

0 0 . .
.

0 0

0 0 0 ½A1�
N 0

0 0 0 0 ½0�

2
6666666664

3
7777777775
; ½A2� ¼

½A2�
1 0 0 0 0

0 ½A2�
2 0 0 0

0 0 . .
.

0 0

0 0 0 ½A2�
N 0

0 0 0 0 ½0�

2
6666666664

3
7777777775
, ðB:3Þ

where

½A0�
i ¼

a11 0 0 a14 0

0 a22 0 a24 a25

0 0 a33 0 0

a14 a24 0 a44 a45

0 a25 0 a45 a55

2
666666664

3
777777775

i

,

½F0�
i ¼

1 0 0

0 1 0

0 0 1

zi 0 0

0 zi 0

2
666666664

3
777777775
; ½A1�

i ¼

0 0 a13 0 0

0 0 a23 0 0

�a13 �a23 0 a34 a35

0 0 �a34 0 0

0 0 �a35 0 0

2
666666664

3
777777775

i

,

½A2�
i ¼

b11 b12 0 b14 b15

b12 b22 0 b24 b25

0 0 b33 0 0

b14 b24 0 b44 b45

b15 b25 0 b45 b55

2
666666664

3
777777775

i

ðB:4Þ

with coefficients ai
gd a

i
gd and bi

gd defined as follows:

ai
11 ¼ ms þ

Iz2

R

� �
o2; ai

14 ¼
Iz

R
þ Iz2

� �
o2; ai

22 ¼ ms þ
Iz2

R

� �
o2 �

F44

R2
þ

H44

R3
,

ai
24 ¼

F45

R
; ai

25 ¼
F44

R
�

H44

R2
þ

Iz

R
þ Iz2

� �
o2; ai

33 ¼ ms þ
Iz2

R

� �
o2 �

A22

R2
þ

B22

R3
,

ai
44 ¼ Izo2 � F55 �

H55

R
; ai

45 ¼ �F45; ai
55 ¼ Izo2 � F44 �

H44

R
, ðB:5Þ
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ai
13 ¼ �

A12

R

� �i

cosj�
A26

R
�

B26

R2

� �i

sinj,

ai
23 ¼ �

A22

R
�

B22

R2
þ

F44

R
�

H44

R2

� �i

sinj�
A26

R
þ

F45

R

� �i

cosj,

ai
34 ¼

B12

R
� F55 �

H55

R

� �i

cosjþ
B26

R
�

D26

R2
� F45

� �i

sinj,

ai
35 ¼

B22

R
�

D22

R2
� F44 þ

H44

R

� �i

sinjþ
B26

R
� F45

� �i

cosj ðB:6Þ

and

bi
11 ¼ A11 þ

B11

R

� �i

cos2 jþ 2Ai
16 cosj sinjþ A66 �

B66

R

� �i

sin2 j,

bi
12 ¼ A16 þ

B16

R

� �i

cos2 jþ A12 þ A66ð Þ
i cosj sinjþ A26 �

B26

R

� �i

sin2 j,

bi
14 ¼ B11 þ

D11

R

� �i

cos2 jþ 2Bi
16 cosj sinjþ B66 �

D66

R

� �i

sin2 j,

bi
15 ¼ B16 þ

D16

R

� �i

cos2 jþ ðB12 þ B66Þ
i cosj sinjþ B26 �

D26

R

� �i

sin2 j,

bi
22 ¼ A66 þ

B66

R

� �i

cos2 jþ 2Ai
26 cosj sinjþ A22 �

B22

R

� �i

sin2 j,

bi
24 ¼ B16 þ

D16

R

� �i

cos2 jþ ðB12 þ B66Þ
i cosj sinjþ B26 �

D26

R

� �i

sin2 j,

bi
25 ¼ B66 þ

D66

R

� �i

cos2 jþ 2Bi
26 cosj sinjþ B22 �

D22

R

� �i

sin2 j,

bi
33 ¼ F55 þ

H55

R

� �i

cos2 jþ 2Fi
45 cosj sinjþ F44 �

H44

R

� �i

sin2 j,

bi
44 ¼ Di

11 cos
2 jþ 2Di

16 cosj sinjþDi
66 sin

2 j,

bi
45 ¼ Di

16 cos
2 jþ ðD12 þD66Þ

i cosj sinjþDi
26 sin

2 j,

bi
55 ¼ Di

66 cos
2 jþ 2Di

26 cosj sinjþDi
22 sin

2 j. ðB:7Þ
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